

 LessThanDot

 A decade of helpful technical content

 	Launchpad
	Blogs
	Forum
	Wiki
	SQLCop
	My Account

 This is an archive of the posts published to LessThanDot from 2008 to 2018, over a decade of useful
 content. While we're no longer adding new content, we still receive a lot of visitors and wanted
 to make sure the content didn't disappear forever.

 Nancy razorview to PDF

 by
 Christiaan Baes (chrissie1)

 on June 23, 2014
 in category
 Uncategorized

 Tweet

 Instapaper

 Sometimes one comes up with the most silly of requirements. This time an external consultant wanted the documentation for my nancy services. I have that documentation as webpages made with razorviews in nancy. Only a very small part is dynamic, most of it is static. The consultant does not have acces to those pages so he needed them in a portable format. I could have used a webscraper, but those sites are blocked here at work. So I decided I could perhaps make them into a PDF file. And look mommy , I did it.

Of course this method is not limited to just any old razorview, this method could be used for all the views nancy makes.

It’s actually very easy to turn a razorview into a pdf as shown by Shane Mitchell on his blog.

In essence it is this part that does the rendering and it uses ITextsharp.
Dim response = New StreamResponse(Function() Dim pdfOutput = New MemoryStream() Dim document = New Document(PageSize.A4, 30, 30, 30, 30) Dim writer = PdfWriter.GetInstance(document, pdfOutput) writer.CloseStream = False If Not document.IsOpen() Then document.Open() For Each c In content XMLWorkerHelper.GetInstance.ParseXHtml(writer, document, New StringReader©) Next document.Close() pdfOutput.Seek(0, SeekOrigin.Begin) Return pdfOutput End If Return Nothing End Function, “application/pdf”)

The thing is that ITextsharp and the XMLWorker support CSS but it is very limited. It for one does not allow you to set an element to display none, and I really needed to eliminate the menus and headers and footer. But for that I can use the HtmlAgilityPack.

Here is the complete code. It reads all the razorviews in the documentation folder, renders it. Removes a few elements, mainly the header and the menu. And then throws them all together in a pdf. And now I can give that to all my little friends.
 Public Sub New(viewlocator As IViewLocator) MyBase.Get(“pdf”) = Function(parameters) Dim viewLocactionContext = New ViewLocationContext() With {.Context = Context, .ModuleName = “Test”, .ModulePath = “”} Dim razorViews = viewlocator.GetAllCurrentlyDiscoveredViews().Where(Function(x) x.Location = “Views/documentation”).Select(Function(x) x.Location.Replace(“Views/”, “”) & “/” & x.Name) Dim content = New List(Of String) Try For Each razorView In razorViews Dim precontent = “” Dim rendered = ViewFactory.RenderView(razorView, Nothing, viewLocactionContext) Using ms = New MemoryStream() rendered.Contents.Invoke(ms) ms.Seek(0, SeekOrigin.Begin) Using reader = New StreamReader(ms) precontent = reader.ReadToEnd End Using End Using Dim doc = New HtmlDocument() doc.LoadHtml(precontent) doc.OptionOutputAsXml = True If doc.DocumentNode.SelectNodes(“//header”) IsNot Nothing Then For Each link In doc.DocumentNode.SelectNodes(“//header”).ToList link.Remove() Next End If If doc.DocumentNode.SelectNodes(“//div[@id=‘menu’]“) IsNot Nothing Then For Each link In doc.DocumentNode.SelectNodes(”//div[@id=‘menu’]“).ToList link.Remove() Next End If doc.OptionStopperNodeName = “” If doc.DocumentNode.SelectSingleNode(“//div[@id=‘wrapper’]“) IsNot Nothing Then content.Add(doc.DocumentNode.SelectSingleNode(”//div[@id=‘wrapper’]“).InnerHtml) End If Next Catch ex As Exception Return ex.Message & ControlChars.CrLf & ex.StackTrace End Try Dim response = New StreamResponse(Function() Dim pdfOutput = New MemoryStream() Dim document = New Document(PageSize.A4, 30, 30, 30, 30) Dim writer = PdfWriter.GetInstance(document, pdfOutput) writer.CloseStream = False If Not document.IsOpen() Then document.Open() For Each c In content XMLWorkerHelper.GetInstance.ParseXHtml(writer, document, New StringReader©) Next document.Close() pdfOutput.Seek(0, SeekOrigin.Begin) Return pdfOutput End If Return Nothing End Function, “application/pdf”) Return response End Function End Sub

ANd yes this is an extremely quick and dirty solution.

But it has a test.
 Public Class TestDocumentationModule Private _browser As Browser Public Sub FixtureSetup() Dim configuration = A.Fake(Of IRazorConfiguration)() Dim textResource = A.Fake(Of ITextResource)() Dim bootstrapper = New ConfigurableBootstrapper(Sub(config) config.Module(Of BecareServices.Modules.DocumentationModule)() config.RootPathProvider(Of RootPathProvider)() config.Dependency(Of ITextResource)(textResource) config.ViewEngine(New RazorViewEngine(configuration)) End Sub) _browser = New Browser(bootstrapper) End Sub Public Sub IfDocumentationAsPdfIsCreated() Dim result = _browser.Get(“/documentation/pdf”, Sub(x) x.HttpRequest() End Sub) Assert.AreEqual(result.ContentType, “application/pdf”) End Sub End Class

Tests always make everything better.

 About Christiaan Baes (chrissie1)

 Chris is awesome.

 Social Sitings

 Author:
 Christiaan Baes (chrissie1)

 Categories:
 Uncategorized

 Tweet

 Instapaper

				

			

			
				©2008 - 2019 LessThanDot, LLC

				

				Valid XHTML | Valid CSS | LTD Archive

			

		

	

	

